If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-101=0
a = 1; b = -20; c = -101;
Δ = b2-4ac
Δ = -202-4·1·(-101)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{201}}{2*1}=\frac{20-2\sqrt{201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{201}}{2*1}=\frac{20+2\sqrt{201}}{2} $
| .25(x+8)=5 | | 17=n-16 | | 5*x+15=8x | | 30=-6j | | 2500+40x=7300-60x | | 15m=m | | 12=w(-4) | | .25x+8=9.75 | | 4(-5x-5)+2x+1=−73 | | 3x-+5=20 | | 3z+18=27 | | 14-2x=-2x+18 | | 88=25+x | | 8x+20=2(4x+10) | | -99610=1700-55q | | 2x-5/7=49x-3/2 | | (5x-8)=(6x-1)=(5x-3)=(4x+4) | | 5(1.15)^x=6x-4 | | 9x-4=42+12x+8 | | 1/4b+2=7 | | 3/5=n/5 | | 5a+12=7a+2 | | -6-0.8x=0 | | Y=2×+3y=×+1 | | (5a+7)=(8a-11) | | y+6y=14 | | 11x=2/3 | | 54=5w+3w | | 9x+5x=3x-97 | | 7(d+3)-3=0 | | 3b+11=14=b | | 1/(x+7)=4/(x+7)-2 |